Packages

object Utilities

Set of utilities functions

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Utilities
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def boolToIndex(data: Array[Boolean]): Array[Int]

    Return an array of the indices that are true

    Return an array of the indices that are true

    data

    boolean array to convert

    returns

    indices

  6. def buildInstances(data: Array[Array[Double]], classes: Array[Any], fileInfo: FileInfo): Instances

    Build a weka Instances object for custom data

    Build a weka Instances object for custom data

    data

    set of "instances"

    classes

    response of instances

    fileInfo

    additional information

    returns

    weka instances

  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate() @throws( ... )
  8. def computeDistances(data: Array[Array[Double]], distance: Distance, nominal: Array[Int], classes: Array[Any]): Array[Array[Double]]

    Compute the distances all elements against all elements

    Compute the distances all elements against all elements

    data

    elements to compute the distance

    distance

    distance to use

    nominal

    array indicating the nominal elements, if present

    returns

    matrix array with the distances

  9. def confusionMatrix(originalLabels: Array[Any], predictedLabels: Array[Any], minorityClass: Any): (Int, Int, Int, Int)

    Compute the number of true positives (tp), false positives (fp), true negatives (tn) and false negatives (fn)

    Compute the number of true positives (tp), false positives (fp), true negatives (tn) and false negatives (fn)

    originalLabels

    original labels

    predictedLabels

    labels predicted by a classifier

    minorityClass

    positive class

    returns

    (tp, fp, tn, fn)

  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  12. def euclideanDistance(xs: Array[Double], ys: Array[Double]): Double

    Compute the Euclidean Distance between two points

    Compute the Euclidean Distance between two points

    xs

    first element

    ys

    second element

    returns

    Euclidean Distance between xs and ys

  13. def euclideanNominalDistance(xs: Array[Double], ys: Array[Double], nominalValues: Array[Int]): Double

    Compute the Euclidean-Nominal Distance between two points

    Compute the Euclidean-Nominal Distance between two points

    xs

    first element

    ys

    second element

    nominalValues

    array indicating the index of the nominal values

    returns

    Euclidean-Nominal Distance between xs and ys

  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  16. def hvdm(xs: Array[Double], ys: Array[Double], nominalValues: Array[Int], sds: Array[Double], attributesCounter: Array[Map[Double, Int]], attributesClassesCounter: Array[Map[Double, Map[Any, Int]]]): Double

    Compute the Heterogeneous Value Difference Metric Distance between two points

    Compute the Heterogeneous Value Difference Metric Distance between two points

    xs

    first element

    ys

    second element

    nominalValues

    array indicating the index of the nominal values

    returns

    Heterogeneous Value Difference Metric Distance between xs and ys

  17. def imbalancedRatio(counter: Map[Any, Int], minorityClass: Any): Double

    Compute the imbalanced ratio (number of instances of all the classes except the minority one divided by number of instances of the minority class)

    Compute the imbalanced ratio (number of instances of all the classes except the minority one divided by number of instances of the minority class)

    counter

    Array containing a pair representing: (class, number of elements)

    minorityClass

    indicates which is the minority class

    returns

    the imbalanced ratio

  18. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  19. def kFoldPrediction(labels: Array[Any], distances: Array[Array[Double]], k: Int, nFolds: Int): Array[Any]

    Split the data into nFolds folds and predict the labels using the test

    Split the data into nFolds folds and predict the labels using the test

    labels

    labels associated to each point in data

    distances

    distances among the elements

    k

    number of neighbours to consider

    nFolds

    number of subsets to create

    returns

    the predictedLabels with less error

  20. def kMeans(data: Array[Array[Double]], nominal: Array[Int], numClusters: Int, restarts: Int, minDispersion: Double, maxIterations: Int, seed: Long): (Double, Array[Array[Double]], Map[Int, Array[Int]])

    Compute KMeans algorithm

    Compute KMeans algorithm

    data

    data to be clustered

    nominal

    array to know which attributes are nominal

    numClusters

    number of clusters to be created

    restarts

    number of times to relaunch the algorithm

    minDispersion

    stop if dispersion is lower than this value

    maxIterations

    number of iterations to be done in KMeans algorithm

    seed

    seed to initialize the random object

    returns

    (dispersion, centroids of the cluster, a map of the form: clusterID -> Array of elements in this cluster, a map of the form: elementID -> cluster associated)

  21. def mode(data: Array[Any]): Any

    Compute the mode of an array

    Compute the mode of an array

    data

    array to compute the mode

    returns

    the mode of the array

  22. def nanoTimeToString(elapsedTime: Long): String

    Convert nanoseconds to minutes, seconds and milliseconds

    Convert nanoseconds to minutes, seconds and milliseconds

    elapsedTime

    nanoseconds to be converted

    returns

    String representing the conversion

  23. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  24. def nnRule(distances: Array[Double], selectedElements: Array[Int], labels: Array[Any], k: Int, which: String = "nearest"): (Any, Array[Int])

    Decide the label using the NNRule considering k neighbours of data set

    Decide the label using the NNRule considering k neighbours of data set

    distances

    distances between the newInstance element and the rest of elements

    selectedElements

    elements to consider

    labels

    labels associated to each point in data

    k

    number of neighbours to consider

    which

    if it's sets to "nearest", return the nearest which, if it sets "farthest", return the farthest which

    returns

    the label associated to newPoint and the index of the k-nearest which, else None

  25. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  26. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  27. def occurrencesByValueAndClass(attribute: Array[Double], classes: Array[Any]): Map[Double, Map[Any, Int]]

    Compute the number of occurrences for each value x for attribute represented by array attribute and output class c, for each class c in classes

    Compute the number of occurrences for each value x for attribute represented by array attribute and output class c, for each class c in classes

    attribute

    attribute to be used

    classes

    classes present in the dataset

    returns

    map of maps with the form: (value -> (class -> number of elements))

  28. def processData(data: Data): Array[Array[Double]]

    Convert a data object into a matrix of doubles, taking care of missing values and nominal columns.

    Convert a data object into a matrix of doubles, taking care of missing values and nominal columns. Missing data was treated using the most frequent value for nominal variables and the median for numeric variables. Nominal columns are converted to doubles.

    data

    data to process

    returns

    matrix of doubles containing the data

  29. def standardDeviation(xs: Array[Double]): Double

    Compute the standard deviation for an array

    Compute the standard deviation for an array

    xs

    array to be used

    returns

    standard deviation of xs

  30. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  31. def toString(): String
    Definition Classes
    AnyRef → Any
  32. def toXData(d: Array[Array[Double]]): Array[Array[Any]]

    Convert a double matrix to a matrix of Any

    Convert a double matrix to a matrix of Any

    d

    data to be converted

    returns

    matrix of Any

  33. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  36. def zeroOneNormalization(d: Data): Array[Array[Double]]

    Normalize the data as follow: for each column, x, (x-min(x))/(max(x)-min(x)) This method only normalize not nominal columns

    Normalize the data as follow: for each column, x, (x-min(x))/(max(x)-min(x)) This method only normalize not nominal columns

    returns

    normalized data

  37. def zeroOneToIndex(data: Array[Int]): Array[Int]

    Return an array of the indices that are one

    Return an array of the indices that are one

    data

    zero/one array to convert

    returns

    indices

  38. object Distances extends Enumeration

    Enumeration to store the possible distances

    Enumeration to store the possible distances

    EUCLIDEAN: Euclidean Distance for numeric values plus Nominal Distance (minimum distance, 0, if the two elements are equal, maximum distance, 1, otherwise) for nominal values.

    HVDM: Proposed in "Improved Heterogeneous Distance Functions" by "D. Randall Wilson and Tony R. Martinez"

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @Deprecated @deprecated @throws( classOf[java.lang.Throwable] )
    Deprecated

    (Since version ) see corresponding Javadoc for more information.

Inherited from AnyRef

Inherited from Any

Ungrouped