class ClusterOSS extends Algorithm
ClusterOSS. Original paper: "ClusterOSS: a new undersampling method for imbalanced learning." by Victor H Barella, Eduardo P Costa and André C P L F Carvalho.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- ClusterOSS
- Algorithm
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
sample(file: Option[String] = None, distance: Distance = Distances.EUCLIDEAN, k: Int = 3, numClusters: Int = 15, restarts: Int = 5, minDispersion: Double = 0.0001, maxIterations: Int = 100): Data
Undersampling method based in ClusterOSS
Undersampling method based in ClusterOSS
- file
file to store the log. If its set to None, log process would not be done
- distance
distance to use when calling the NNRule algorithm
- k
number of neighbours to use when computing k-NN rule (normally 3 neighbours)
- numClusters
number of clusters to be created by KMeans algorithm
- restarts
number of times to relaunch KMeans algorithm
- minDispersion
stop KMeans algorithm if dispersion is lower than this value
- maxIterations
number of iterations to be done in KMeans algorithm
- returns
Data structure with all the important information
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )