class IterativeInstanceAdjustmentImbalancedDomains extends Algorithm
Iterative Instance Adjustment for Imbalanced Domains. Original paper: "Addressing imbalanced classification with instance generation techniques: IPADE-ID" by Victoria López, Isaac Triguero, Cristóbal J. Carmona, Salvador García and Francisco Herrera.
- Alphabetic
- By Inheritance
- IterativeInstanceAdjustmentImbalancedDomains
- Algorithm
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
IterativeInstanceAdjustmentImbalancedDomains(data: Data, seed: Long = System.currentTimeMillis(), minorityClass: Any = -1)
- data
localTrainData to work with
- seed
seed to use. If it is not provided, it will use the system time
- minorityClass
indicates the minority class. If it's set to -1, it will set to the one with less instances
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
sample(file: Option[String] = None, iterations: Int = 100, strategy: Int = 1, randomChoice: Boolean = true): Data
Compute Iterative Instance Adjustment for Imbalanced Domains undersampling
Compute Iterative Instance Adjustment for Imbalanced Domains undersampling
- file
file to store the log. If its set to None, log process would not be done
- iterations
number of iterations used in Differential Evolution
- strategy
strategy used in the mutation process of Differential Evolution
- randomChoice
whether to choose a random individual or not
- returns
Data structure with all the important information
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )