class EasyEnsemble extends Algorithm
Easy Ensemble algorithm. Original paper: "Exploratory Undersampling for Class-Imbalance Learning" by Xu-Ying Liu, Jianxin Wu and Zhi-Hua Zhou.
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- EasyEnsemble
- Algorithm
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
sample(file: Option[String] = None, ratio: Double = 1.0, replacement: Boolean = false, nTimes: Int = 5): Data
Compute the Easy Ensemble algorithm.
Compute the Easy Ensemble algorithm.
- file
file to store the log. If its set to None, log process would not be done
- ratio
ratio to know how many majority class examples to preserve. By default it's set to 1 so there will be the same minority class examples as majority class examples. It will take numMinorityInstances * ratio
- replacement
whether or not to sample randomly with replacement or not. false by default
- nTimes
times to perform the random undersampling
- returns
Data structure with all the important information and index of elements kept
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )