class NeighbourhoodCleaningRule extends Algorithm
Neighbourhood Cleaning Rule. Original paper: "Improving Identification of Difficult Small Classes by Balancing Class Distribution" by J. Laurikkala.
- Alphabetic
- By Inheritance
- NeighbourhoodCleaningRule
- Algorithm
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
NeighbourhoodCleaningRule(data: Data, seed: Long = System.currentTimeMillis(), minorityClass: Any = -1)
- data
data to work with
- seed
seed to use. If it is not provided, it will use the system time
- minorityClass
indicates the minority class. If it's set to -1, it will set to the one with less instances
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
sample(file: Option[String] = None, distance: Distance = Distances.EUCLIDEAN, k: Int = 3, threshold: Double = 0.5): Data
Compute the Neighbourhood Cleaning Rule (NCL)
Compute the Neighbourhood Cleaning Rule (NCL)
- file
file to store the log. If its set to None, log process would not be done
- distance
distance to use when calling the NNRule algorithm
- k
number of neighbours to use when computing k-NN rule (normally 3 neighbours)
- threshold
consider a class to be undersampled if the number of instances of this class is greater than data.size * threshold
- returns
Data structure with all the important information and index of elements kept
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )